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Abstract. It is shown that the fluctuations of the jamming coverage upon Random Sequential Adsorption
(RSA) (σθJ ), decay with the lattice size according to the power-law σθJ ∝ L−1/νJ , with νJ = 2

2D−df
,

where D is the dimension of the substrate and df is the fractal dimension of the set of sites belonging to
the substrate where the RSA process actually takes place. This result is in excellent agreement with the
figure recently reported by Vandewalle et al. [Eur. Phys. J. B 14, 407 (2000)], namely νJ = 1.0 ± 0.1 for
the RSA of needles with D = 2 and df = 2, that gives νJ = 1. Furthermore, our prediction is in excellent
agreement with different previous numerical results. The derived relationships are also confirmed by means
of extensive numerical simulations applied to the RSA of dimers on both stochastic and deterministic fractal
substrates.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 02.50.-r
Probability theory, stochastic processes, and statistics

The irreversible deposition of particles on a surface in-
volves two characteristic time scales: the time between
depositions, and the diffusion time of the particles on the
surface. For very strong interaction between particles and
the substrate (chemical adsorption), diffusion becomes ir-
relevant and the Random Sequential Adsorption (RSA)
model provides an excellent description of the underlying
processes (for a review on RSA models see [1]). Under
these conditions the system evolves rapidly toward far-
from equilibrium conditions and the dynamics becomes
essentially dominated by geometrical exclusion effects be-
tween particles. This kind of effects has been observed in
numerous experiments [2].

The RSA of needles (or linear segments) on homo-
geneous, two-dimensional samples, has very recently at-
tracted considerable interest [3,4]. Particular attention
has been drawn to the interplay between the jamming
coverage and percolation [3–5]. The percolation problem
has also attracted considerable attention in the field of
statistical physics due to their relevance for the under-
standing of processes and phenomena in many other ar-
eas such as those occurring in disordered media, porous
materials, systems of biological and ecological interest,
etc. [6,8,9]. Therefore, a great progress in the field of the
statistical physics of far-from equilibrium processes could
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be achieved by establishing links between RSA and per-
colation [3–5].

The percolation transition is related to the probability
of occurrence of an infinite connectivity between randomly
deposited objects, as a function of the fraction p of the
substrate occupied by the objects. Close to the percola-
tion threshold pc, the probability P to find a percolating
cluster, on a finite sample of side L, is given by an error
function [9]

P =
1√
2πσ

∫ p

−∞
exp

[
−1

2

(p′ − pc

σ

)2
]

dp′, (1)

where σ is the width of the transition region. It is well
known that σ vanishes in the thermodynamic limit ac-
cording to [9]

σ ∝ L− 1
ν , (2)

where ν is the exponent that governs the divergence of the
correlation length as ξ ∝ |p − pc|−ν .

Very recently it has been suggested that the jamming
probability and the fluctuations of the jamming coverage
may obey relationships similar to equations (1, 2) [3], re-
spectively. The aim of this note is to provide a qualita-
tive derivation of equation (2) for the case of RSA on
both homogeneous and deterministic fractal substrates.
The predictions of the obtained equation will be compared
with previously published data and further numerical tests
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will be performed. To accomplish these goals, the RSA of
dimers on deterministic and stochastic fractals such as a
Sierpinski Carpets (SC) [8] and the diffusion front [6,8],
has been studied.

Let us first establish a link between the fluctuations of
the number of deposited particles (at the jamming state)
on a subsystem of side L0 with those of a system of side L,
with L0 < L. Considering a fractal subsystem of side L0,
that has itself Q0 minimal pattern blocks, and increasing
the size of the subsystem n steps λ times until reaching
the size L, such as L(n) = λnL0, then Q0 will change to
Q(n) = snQ0. Therefore, eliminating n, it follows that

Q = Q0 ×
(

L

L0

)df

(3)

where df = log(s)/ log(λ) is the fractal dimension.
Let N0 be the number of adsorbed particles in the

starting subsystem of side L0. For the system of side L
the number of adsorbed particles N(L) is given by the
sum

N(L) =
sn∑
ı=1

Ni, (4)

where Ni are the number of adsorbed particles on each
subsystem of side L0 that form the system of side L. Let
σN(L0) be the fluctuations, in the starting L0-subsystem,
of N0. If the correlation length associated to the random
sequential adsorption (ξRsa) is short compared with L0

(ξRsa � L0), the random variables Ni will be statistically
independent an so from equation (4) it follows

σ2
N(L) =

sn∑
ı=1

σi
2. (5)

Furthermore, in the thermodynamic limit, the L0-
subsystems should have identical statistical properties.
Thus, their respective fluctuations will be the same. So,
from the fact that sn = Q(n)

Q0
and equations (3, 5) one has

σ2
N(L) =

σ2
N0

Ldf
0

× Ldf , (6)

then the fluctuation of the density (θ) in the system of
size L can be obtained from equation (6) dividing by L2D,
so that

σθ ∝ L
− 1

νJ , (7)

where
νJ =

2
2D − df

. (8)

It should be stressed that equations (7, 8) are quite
general relationships valid for substrate systems that are
both homogeneous and deterministic fractal. Further-
more, the same relationships hold for the case of substrates
globally-invariant under translations, such as random frac-
tals, as it has been demonstrated elsewhere [11]. Also, the
condition that the correlation length of the RSA process
should be smaller than the system size is usually valid for

jammed states, where the correlation length is very short.
It is also very interesting to notice that, using these re-
lationships it may be possible to evaluate df performing
both RSA numerical simulations and actual experiments.
Furthermore, existing numerical simulations performed in
D = 2 dimensions with df = 2 are in excellent agreement
with equations (7) and (8) (notice that for these condi-
tions it follows straightforwardly from equation (8) that
νJ = 1 exactly). In fact, for the jamming upon RSA of
needles in two dimensions the value νJ = 1.0 ± 0.1 has
been reported [3] and this figure is independent of the
aspect ratio of the needles. Furthermore, early numerical
results of Nakamura for the RSA of square blocks are also
consistent with νJ � 1 [10], while Kondrat et al. [4] have
reported νJ = 1.00 ± 0.05 for the RSA of segments on
the square lattice. Since the obtained values for the expo-
nent are independent (within error bars) of: i) the length
of the segments (for all a = 1, 2, ..., 45) [4], ii) the as-
pect ratio of the needles [3] and iii) the size of the square
blocks [10], it has been suggested that νJ is a good candi-
date for an universal quantity of the jamming process [4].
Within this context, our finding shows that νJ depends
on the dimensionality of the substrate and the set where
the RSA processes actually takes place.

On homogeneous samples the jamming coverage (θ)
and its fluctuations (σθ) can straightforwardly be ob-
tained, since one has to deal with a single stochastic
process. However, RSA on nonhomogeneous random sub-
strates requires a careful treatment because two correlated
stochastic processes are now involved [11]. One can assume
that the fluctuations due to the RSA process are given by
an average over M independent samples:

σθ =
M∑
i=1

σi
θ

M
, (9)

where σi
θ are the fluctuations measured using a single sub-

strate sample but taken averages over independent RSA
trials. It has been shown [11] that measuring σθ with the
aid of equation (9) one captures the physical behavior
of the RSA process. In contrast, measuring the fluctua-
tions of the average jamming coverage of different sam-
ples the physical behavior reflects the properties of the
substrate [11].

In order to perform additional tests to the obtained
analytical results, the RSA of dimers on both stochastic
and deterministic fractals has been studied numerically.

As example of an stochastic fractal, we have used a
diffusion front. In order to generate the diffusion front, we
considered the diffusion of particles at random, but with
hard-core interactions, on a 2D square lattice of size L×L.
There is a source of particles at the first row of the lattice
y = 1, 1 ≤ x ≤ L kept at concentration p(1, t) ≡ 1. Also,
at row y = L + 1, 1 ≤ x ≤ L there is a well, p(L + 1, t) ≡
0. So, there is a concentration gradient along the source-
well direction, while along the perpendicular x-direction
periodic boundary conditions are imposed. In the steady
state the concentration gradient is constant, so one has

∇p(y) = L−1. (10)

R
ap

id
e N

o
te R

ap
id

 N
o

te



E.S. Loscar et al.: Scaling behavior of jamming fluctuations upon random sequential adsorption 159

It is well known that the properties of the diffusion
front [12,13] are closely related to those of the incipi-
ent percolation cluster [6,8,9]. As the concentration p(y)
of particles depends on the position, decreasing from the
source to the well, one actually has a gradient percolation
system. The structure of the diffusion front is identical
to the structure of the hull of the incipient percolation
cluster [12]. Furthermore, the concentration of particles
at the mean front position yf is the same as the percola-
tion threshold pc, so that p(yf ) = pc [12]. The diffusion
front is conveniently described by its average width σf and
the total number Nf of particles that constitute it. Using
heuristic arguments it has been suggested that

Nf

L
∼ |∇p(yf )|−αN where αN =

1
ν + 1

(11)

being ν the critical exponent of the correlation length in
the percolation problem [6,8]; ν = 4/3 in 2D, which gives
αN = 3/7. So, from equations (10, 11) one has

Nf ∼ LdDF
f , (12)

with dDF
f = αN + 1 = 10/7 ≈ 1.4286, and the diffusion

front is a stochastic self-similar fractal [14].
RSA of dimers on diffusion fronts has been simulated

using two rules: according to Rule I only adsorption events
of dimers taking place on two nearest-neighbor (NN) sites,
such us one of then belongs to the diffusion front and the
remaining one is outside it, are considered. On the other
hand, using Rule II one only allows the adsorption on
NN sites of the diffusion front, disregarding adsorption
trials on already occupied sites of the front and sites out-
side the fractal.

RSA of dimers on deterministic fractals (Sierpinski
Carpets [6,8]) is also studied. The SC in D = 2 dimen-
sions is generated by dividing a full square into λD smaller
squares of the same size. Out of these squares, k of them
are chosen and removed. In the next iteration, the proce-
dure is repeated by dividing each of the small squares left
into λD smaller squares removing those k squares that are
located at the same positions as in the first iteration. The
resultant fractal dimensions are

df(s, λ) = log(s)/ log(λ) (13)

where s = λD − k. In principle, this procedure has to be
repeated again and again, however for the practical imple-
mentation in a computer only a finite number of iterations
are actually performed [8,7]. In a square lattice the smaller
subdivision is actually a single site and the length is mea-
sured in site units. Furthermore there is a minimal pattern
of λdf sites. In the present work various generations of SC’s
of different size L, with periodical boundary conditions,
have been employed. In all cases dimers are allow to ad-
sorb only on NN empty sites belonging to the fractal. For
SC’s with λ = 3 and k = 1, 2, 3, as used in the simulations,
the fractal dimensions are dfI = log(8)/ log(3) ≈ 1.8928,
dfII = log(7)/ log(3) ≈ 1.7712 and dfIII = log(6)/ log(3) ≈
1.6309, respectively.
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Fig. 1. Log-log plots of σθ versus L for the case of RSA of
dimers on the random fractal generated by diffusion fronts
(DF). Results obtained using two different adsorption rules are
shown. For details the adsorption rules see the text.
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Fig. 2. Log-log plots of σθ versus L for the case of RSA on
Sierpinski Carpets obtained using different generating patterns
as shown in the figure (black squares compose the fractal struc-
ture).

Figures 1 and 2 show log-log plots of σθ versus L ob-
tained upon RSA of dimers on diffusion fronts and Sierpin-
ski Carpets, respectively. The obtained results, for these
kind of fractals, are in excellent agreement with the pre-
diction of equation (8) as follows from the comparison
of evaluated and theoretical exponents listed in Table 1.
Further support to the theoretical prediction follows from
additional results obtained using homogeneous samples,
which are also listed in Table 1.

Summing up, it is shown that the exponent νJ can
be obtained as a function of the dimensionality D of the
space and the fractal dimension df of the subset site where
the RSA process actually takes place. Our main result
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Table 1. Examples of the application of equation (8) to dif-
ferent fractals as listed in the first column: SC ≡ Sierpin-
ski Carpet, DF ≡ Diffusion front, HS2 Homogeneous Sub-
strate in D = 2 dimensions. The 2nd column shows the ex-
ponents obtained fitting equation (8) to the simulation results
while the 3rd one shows the estimations of df obtained using
1

νJ
= 2D−df

2
. The 4th column is a list of the exact values of

df . Notice that for SC the labels a)-e) allows to identify the
generating patterns, as shown in Figure 2.

Substrate 1/νJ d∗
f df

SC (a) 1.051(4) 1.898(8) ln(8)/ ln(3) � 1.893

SC (b) 1.052(4) 1.896(8) ln(8)/ ln(3) � 1.893

SC (c) 1.115(2) 1.770(4) ln(7)/ ln(3) � 1.771

SC (d) 1.110(7) 1.780(15) ln(7)/ ln(3) � 1.771

SC (e) 1.16(2) 1.68(4) ln(6)/ ln(3) � 1.631

DF 1.30(2) 1.40(4) 10/7 � 1.429

HS2 (D = 2) 1 - 2

νJ = 2
2D−df

, provides a solid ground to previous numeri-
cal data [3,4,10]. Furthermore, in this work, the validity
of the proposed relationship is verified by means of ex-
tensive numerical simulations, using both homogeneous
substrates as well as different fractals.

This work was supported by CONICET, UNLP and ANPCyT
(Argentina).
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